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Abstract

This paper considers state estimation for multiple plants over a shared communication network. Each

linear time-invariant plant transmits information through the common network according to either a time-

triggered or an event-triggered rule. For an event-triggered algorithm with CSMA (carrier sense multiple

access), each plant is assumed to access the network based on a priority mechanism. For a time-triggered

algorithm combined with TDMA (time division multiple access), each plant uses the network according

to an off-line scheduling. Performance in terms of the communication frequency and the estimation error

covariance is analytically characterized for some special cases. The main result is that event-triggered

schemes may perform worse than time-triggered schemes when considering the effect of communication

network.

I. INTRODUCTION

A. Background and Motivating Problem

In networked control systems, periodic sampling is normally used for control and estimation purposes.

Standard sampled-data control theory can be used for analysis of periodic sampling [1], [2]. In recent

literature, event-based techniques have been proposed for more efficient utilization of network resources

[1], [3], [4]. The basic idea of event trigger is to update the control input only when something significant

occurs. It has been shown that event-triggered schemes are superior to time-triggered methods in the sense

that comparable performance can be achieved at the expense of vastly reduced communication rate [5].

An important stream of work in event triggered schemes is analytically characterizing the performance

achieved through such algorithms. Works such as Tabuada [3] and Lemmon [5] focus on stabilizing control
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tasks via a state-dependent event triggered scheduler. Rabi and Baras [6] consider a scalar system driven

by a weiner process and for a constant threshold event triggering policy, provide analytic expressions

for the variance of the state. Li and Lemmon [7] extend this work to vector linear process and propose

a way to calculate sub-optimal event triggering thresholds. The optimal policies are derived in [8] as

solutions to an average cost optimization problem using dynamic programming. A related problem is

studied in Imer and Basar [9] where the estimation error is minimized under the constraint of limited

observer actions. Shi and Qiu [10] propose a joint time-based and event-based schedule to tradeoff the

estimation error and the computation complexity permitting limited communication resources. The works

discussed above concentrate on a single loop in the network and evaluate the system performance (such

as stability or error covariance), but they do not provide analytical results for the communication rate

through event triggered algorithms.

As for a single loop in the system, event trigger may outperform periodic sampling by reducing utiliza-

tion of the communication resources as shown in the previous results [1], [3], [5]. When multiple loops

share a common network, however, the interaction between control architecture and the communication

strategies become more complicated. For instance, with multiple plants over a shared medium, a multiple

access method is needed to multiplex the data streams, such as TDMA (time division multiple access)

and CSMA (carrier sense multiple access) [11], [12]. Obviously, the methods to access the network have

a significant impact on the performance of the system [13]. Intuitively, TDMA is suitable for periodic

sampling and CSMA is suitable for event trigger since the arrival of events for different loops are generally

unpredictable. For event trigger associated with CSMA and time trigger with TDMA, will event triggered

schemes still perform better than time triggered schemes? This is the problem we are interested in and

for the best of our knowledge, this problem has not been fully investigated.

B. Relevant Work

Works such as [14], [15], [2] start to look at the problem of multiple loops in the network. Cervin and

Henningsson [2] consider a NCS with a number of independent control loops over a shared network and

use numerical methods to compute the control performance under various multiple access schemes such

as TDMA, FDMA and CSMA. The interference between event triggered control and shared medium is

also studied in Cervin [15] where the stationary state distribution is calculated based on a simple model.

Rabi and Johansson [14] consider packet loss due to contention of different loops (using event triggered

control) for the shared medium and characterize the control performance based on the packet loss rate.

However, they assume the losses for different loops are independent, which is not true in general [11].
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The analytical results of [15][14] are grounded on either a simplified system model or an unrealistic

assumption on the correlation of different loops.

The common communication protocols have been studied in [2], but their results are mainly derived

from simulation. To analytically characterize the interaction between control and communication, a

suitable model of the communication systems is needed. Most recently, a simple ALOHA protocol is

used for modeling the communication networks in Blind [16]. Similar to [14], each loop is modeled by

noisy integrator dynamics. The correlation of different loops is removed through a particular triggering

rule. In such networks, packets are transmitted whenever an event is generated for the plant. However, the

packets will be lost if more than two plants transmit information simultaneously since no backup strategy

for collision resolution is considered. CSMA protocols for event based systems are considered in Ramesh

and Johansson [11]. A Markov based model is introduced to characterize the probability of successful

transmission for each plant in steady state. The key assumption is that the conditional probability of a

busy channel for the attempting node to transmit is independent for each node as in [17]. Although the

correlations between various loops and the need for joint analysis between event trigger and CRM are

addressed, no performance analysis of the NCS is provided in this work.

C. Summary of this Paper

This paper is an extension of [18] where performance expressions for a single loop are characterized.

In this paper, we consider multiple plants transmitting information through a common network according

to either a time triggered rule or an event triggered rule. To avoid collision, we use CSMA for event

trigger based on a priority mechanism as in [2] and TDMA for time trigger. Performance in terms of

the communication rate and the estimation error covariance is analytically characterized under various

medium access schemes for some special cases. Our results demonstrate time trigger can outperform

event trigger when multiple loops share access to the network.

The rest of the paper is organized as follows. Section II describes medium access schemes and presents

an illustrating example to show time trigger may perform better than event trigger. Section III presents

the problem formulation. The analysis for event triggered estimation of a single plant is provided in

Section IV and extended to NCS with multiple plants in Section V. Numerical illustration is provided in

Section VII. This paper concludes with some avenues for future work in Section VIII.

Notation: The n-dimensional real space is denoted by Rn. Denote the vector of all zeros by 0 and the

vector of all ones by 1. The vector is denoted by z or simply z when causing no confusion. The infinity

norm of a vector x is denoted by |x|. For a matrix M , the (i, j)-th element is denoted by M(i, j). The
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variable y is less than but close to a real number b is denoted by y � b. For a m-dimensional multivariate

Gaussian random variable X with mean vector µ and covariance R, we denote the generalization of

the cumulative distribution function F function as Pr(|X| ≤ x) � F (m,µ,R, x), where the inequality

is interpreted element-wise. Also for the truncated multivariate Gaussian random variable obtained by

truncating X between the vectors t1 and t2, define the variance by Σ(X, t1, t2). As with the standard

F functions and truncated Gaussian distributions, evaluation of these generalizations is done through

Gaussian integrals (see, e.g., [19, Equation (16)] for formulas for the variance of truncated Gaussian

distributions) and is a standard feature in most statistics packages.

II. PRELIMINARY WORK

In this section, we first introduce medium access (MA) schemes and then present a simple example

to demonstrate time trigger may perform better than event trigger with associated MA schemes.

A. Medium Access Schemes

For event triggered algorithms, a contention based multi access method (such as CSMA) is introduced

to multiplex the data flows. More specifically, when two or more plants intend to use the network

simultaneously, the network grants the plant with the highest priority to access the network and the

other packets will be discarded. The priority orders of the plants can be decided according to one of the

following collision resolution mechanisms (CRM) [2], [11], [13].

• Static priority [13], [12]: The priority orders of the plants are decided in advance and remain fixed

during system operation. This scheme is typically implemented by polling or token ring and used in

Control Area Network (CAN). It is reasonable to assume the plant who is more sensitive to delays

has higher priority.

• Random priority [2], [11]: In wireless networks (such as Ethernet or WLAN), random back off

strategies are normally used and a random plant is allowed to access the network maybe after some

delay. When plant information is not available to the network, it is reasonable to randomly assign

priorities to the competing nodes.

• Dynamic priority [13], [2]: The priorities are adapt to dynamically changing progress during the

system operation. The objective is to use the the network more efficiently. It makes sense to assume

the plant with maximum error to access the network first (MEF). The dynamic scheduler can also

be used in CAN.

DRAFT



5

For time triggered algorithms, TDMA is used to multiplex the date where a cyclic access schedule is

decided in advance. For a NCS consisting of finite number of plants, an optimal schedule can be found

by evaluating the cost for every possible schedule [2]. When there is no cost for using the network, it

is reasonable to assume the network is used at every time step. Applications of TDMA include mobile

communications and WirelessHART [20].

B. One Illustrating Example

Consider the following example where a NCS consists of two plants over a shared communication

medium.

Example 1: The plant Si is described as follows.

Si : xi(k + 1) = Aixi(k) + wi(k),

yi(k) = xi(k),

with A1 = 1, A2 = 0.9. The process noise wi(k) is white, zero mean, Gaussian with covariance unity. The

initial condition of xi(0) is a normal Gaussian random variable. The process noise and initial conditions

are assumed to be mutually independent.

Denote the estimate for state xi(k) by x̂deci (k). At the ith estimator, we have

x̂deci (k) =






xi(k), if xi(k) received at k,

Aix̂deci (k − 1), otherwise,

Define the estimation error

edeci (k) = xi(k)− x̂deci (k),

and the quality of estimate for the NCS is measured by

J =
2�

i=1

lim
t→∞

1

t

t�

k=0

E
�
edeci (k)

�2
.

Event trigger: Information transmission for Si occurs if the local event occurs, i.e. when

| xi(k)−Aix̂
dec
i (k − 1) |> εi,

where εi is a given constant. CRM described in Section II-A is applied when two local events occur

simultaneously. We assume the network allows each plant to transmit at least once for every Te time

steps. This assumption is to guarantee fairness and guard against the practical concern of maximum delay

that each plant can tolerate.
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Time trigger: Each plant uses the network periodically. To avoid collision, we assume the two plants

use the network asynchronously. Since there is no cost associated with using the network, we consider

the communication rate P � 1. As an example, P = 0.98 is the result by transmitting S1 at odd time

steps in every 50 time steps and transmitting S2 at even time steps except for the multiples of 50.

The simulation results are provided in Figure 1 for event trigger with different CRMs by conducting

10, 000 Monte Carlo experiments and setting Te = 10 and ε1 = ε2. It can be seen that the communication

rate is similar for various CRMs (in the top plot), but the system performance (in the bottom plot) is

quite different for small triggering levels. The communication rate converging to 0.2 is because for large

ε (no local events are generated), the network transmits information for each plant every Te time steps.
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Fig. 1. The communication frequency and the error covariance for Example 1 using event trigger with various CRMs.

The comparison between time trigger and event trigger are summarized in Table I. We see from Table

I that event trigger with static and random schedulers have larger estimation error covariance than time

trigger with TDMA, under the same communication rate P = 0.98. For event trigger with dynamic

scheduler, the estimation error covariance can be larger than time trigger (with cost J = 1) when the

triggering level ε ≥ 1, as shown in the bottom plot of Figure 1.

In the next section, we are going to formalize the problem statement of state estimation for NCS under

time-triggered and event-triggered schemes.
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TABLE I

PERFORMANCE COMPARISON OF TIME TRIGGER AND EVENT TRIGGER UNDER THE SAME COMMUNICATION RATE

Scheme Scheduler Performance Threshold Comm Rate

Time-trigger TDMA J = 1.036 - 98%

Static J = 2.618 0.215 98%

Event-trigger Random J = 1.348 0.221 98%

Dynamic J = 0.427 0.176 98%

III. PROBLEM FORMULATION

Consider the problem setup as shown in Figure 2 where N plants transmit information over a shared

network.

Fig. 2. Problem setup considered in this paper.

Plant and Sensor: The ith plant is described by the following discrete linear time-invariant evolution:

xi(k + 1) = Aixi(k) + wi(k),

yi(k) = Cixi(k) + vi(k), (1)

where xi(k) ∈ Rn denotes the state vector, yi(k) ∈ Rm is the output vector, wi(k) is the process noise

assumed to be white Gaussian with zero mean and covariance Rwi > 0, and vi(k) is the measurement

noise assumed to be white Gaussian with zero mean and covariance Rvi > 0. For the analytical results in

the paper, we will consider n = m = 1, although the arguments can be easily generalized at the expense
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of more notation. The initial condition of the process xi(0) is assumed to be a Gaussian random vector

with zero mean and covariance Ri(0). The process noise {wi(k)}, the measurement noise {vi(k)}, and

the initial condition xi(0) are assumed to be mutually independent. Ai and Ci are real matrices and the

pair (Ai, Ci) is assumed to be observable.

Estimator: At every time k, the ith estimator generates a minimum mean squared error (MMSE)

estimate for the state xi(k) based on whatever information is available to it. In a time-triggered archi-

tecture, this information is the set of measurements {y0, · · · , yk} that received from the network in a

periodic manner. In an event-triggered architecture, this information is any information transmitted by

the comparator, and the time steps at which information transmission occurs. Denote the estimate for

state xi(k) held by the ith estimator as x̂deci (k). At the ith estimator, we have

x̂deci (k) =






xi(k), if the ith packet received,

Aix̂deci (k − 1), otherwise.

where Aix̂deci (k − 1) is the optimal estimate at the estimator if the estimator did not receive any infor-

mation at time k. Thus, the estimation error evolves as

edeci (k) =






0, if the ith packet received,

Aiedeci (k − 1) + wi(k − 1), otherwise.

Comparator: The event-triggered algorithm is implemented at the comparator. We consider a level

based scheme. Specifically, we consider two cases. In the first simpler case, we assume that the mea-

surement noise vi(k) is identically zero, and the matrix Ci is identity. Thus, the ith sensor observes the

state xi(k) at every time k. The local event is defined as

| ecomp
i (k) |> εi, (2)

where ecomp
i (k)�xi(k)−Aix̂deci (k − 1), the threshold εi is a given constant. The second case we consider

is when the measurement noise is not zero. In this case, we assume that the comparator calculates a

local estimate x̂enck of the state xk based on all measurements {y0, · · · , yk}. However, in this case,

ecomp
i (k)�x̂enci (k) − Aix̂deci (k − 1). Calculation of x̂enci (k) admittedly requires more computational

resources at the comparator; however, this scheme can transmit much more information than simply

transmitting the latest measurement y(k) (c.f. [21]).

Communication Network: The communication network is modeled by satisfying the following as-

sumptions.
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• A1: The network does not permit simultaneous transmissions. The transmission time is less than

one time step [11], [16].

• A2: The plant sends information according to an off-line scheduling (for time-triggered schemes)

or whenever an event is generated (for event-triggered schemes).

• A3: When two or more plants send information simultaneously, the network will transmit the packet

received from the plant with highest priority based on CRMs in Section II-A and the rest packets

will be discarded.

• A4: The network allows each plant to transmit at least once for every T time steps to guard against

the practical concern of maximum tolerable delay.

We are interested in the problem of state estimation for the NCS, particularly the following two metrics:

(1) The communication rate P , which is defined as the average probability for the network to transmit

information at each time step. (2) The quality of estimate for the NCS, which is measured by the aggregate

error covariance,

J =
N�

i=1

lim
t→∞

1

t

t�

k=0

E
�
edeci (k)[edeci (k)]T

�
,

with edeci (k)�xi(k)− x̂deci (k) as the estimation error for Si.

IV. SINGLE PLANT RESULTS

In this section, we present results for event triggered estimation of a single plant. The analysis is

extended to NCS with multiple event triggered loops in the next section. We will focus on the case when

the state is observed. When the process state is not observed by the sensor, the development will be

similar by using, e.g., a Kalman filter [18].

In the following analysis, we drop the subscript i in the previous section. The information can be

successfully transmitted through the network whenever |ecomp(k)| > ε since there is no contention to

access the network. As shown in Figure 3, we can define a discrete-time discrete-state Markov chain M

with T + 1 modes, the state {X(k)}k≥0 and the transition probabilities

pij = Pr(X(k + 1) = j
��X(k) = i),

such that X(k) = j implies that at time k, the last transmission occurred at time k − j.

The communication frequency and the estimation error covariance are characterized by this Markov

chain. To this end, define the random variables

Zi(k) =
i�

j=0

Ajw(k + i− j), 0 ≤ i ≤ T. (3)
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Fig. 3. Transition graph of the Markov Chain defined for a single plant.

Since the noise w(k) is white, the probability density function of the variables Zi(k) is independent of

k. In the sequel, we will simply write Zi to denote the random variables. Clearly, for any i, the vector

random variable Mi =
�
ZT
0 , Z

T
1 , · · · , ZT

i

�T
has a multi-variate normal distribution with mean 0 and

covariance matrix Ri as




Rw RwA
T · · · Rw(A

T )i

ARw ARwA
T +Rw ARw(A

T )2 +RwA
T · · ·

...
. . .

AiRw · · ·




.

Now for 1 ≤ i ≤ T , define the events

Ni = (| Z0 |< ε) ∩ (| Z1 |< ε) ∩ · · · ∩ (| Zi−1 |< ε) , (4)

with the convention that N0 is the sure event. The following result is immediate:

Pr(Ni) = F (ni, 0, Ri, ε1), (5)

with Pr(N0) = 1.

Lemma 1: Consider the Markov chain M as defined above. The transition probabilities pij are given

by

pij =






1− F (n(i+1),0,Ri+1,ε1)
F (ni,0,Ri,ε1) 0 ≤ i ≤ T − 1, j = 0

1 i = T, j = 0

1− pi0 0 ≤ i ≤ T − 1, j = i+ 1

0 otherwise

(6)

Proof: We concentrate on the case when 0 ≤ i ≤ T − 1, j = 0 since the other expressions are

obvious from the structure of the Markov chain shown in Figure 3. Consider the transition probability
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p00. Since X(k) = 0 is equivalent to edec(k) = 0, we have

p00 = Pr(X(k + 1) = 0
��X(k) = 0)

= Pr(|w(k)| > ε
��edec(k) = 0)

(a)
= Pr(|w(k)| > ε) = Pr(| Z0 |> ε),

where (a) holds because edec(k) is independent of the process noise at time step k. Similarly, for any i

such that 0 ≤ i ≤ T − 1, the probability

pi0 =Pr(X(k + 1) = 0
��X(k) = i)

(b)
=Pr

�
| Zi |> ε

��Ni, e
dec(k − i) = 0

�

(c)
=Pr

�
| Zi |> ε

�� | Zi−1 |< ε, · · · , | Z0 |< ε
�

=
Pr(| Zi |> ε,Ni)

Pr(Ni)
= 1− Pr(Ni+1)

Pr(Ni)
,

where (b) follows the Markovian property and the definiations in (3), and (c) holds because edec(k − i)

is independent of the process noise after time step k − i and in particular, Zi. Now the result follows

from (5), which can be evaluated using Gaussian integrals and the fact that pT0 = 1.

Theorem 2: The average communication rate for the event triggered algorithm described above is given

by 1
1+

�T
j=1

�j−1
i=0 (1−pi0)

, which can be calculated using (6).

Proof: The average communication rate for the system is given by limk→∞ Pr(X(k) = 0). From the

fact that pi0’s are time-invariant and using the structure of the Markov chain from Fig. 3, the probability

for each mode j (j ≥ 1) can be computed as

Pr(X(k) = j) = (1− pj−1,0)Pr(X(k) = j − 1)

=
j−1�

i=0

(1− pi0)Pr(X(k) = 0). (7)

Thus, the balance equation for the Markov chain yields

1 =
T�

j=0

Pr(X(k) = j)

= Pr(X(k) = 0) +
T�

j=1

j−1�

i=0

(1− pi0)Pr(X(k) = 0)

=



1 +
T�

j=1

j−1�

i=0

(1− pi0)



Pr(X(k) = 0).
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The required probability Pr(X(k) = 0) can now be calculated as

Pr(X(k) = 0) =
1

1 +
�T

j=1

�j−1
i=0 (1− pi0)

.

The other performance metric is the covariance of estimation error Π(k) = E[edec(k)(edec(k))T ] which

is given by the following relation.

Theorem 3: The steady state average error covariance Π = limk→∞Π(k) for the event triggered

algorithm described above is given by

Π =
T�

j=1

j−1�

t=0

(1− pt0)Pr(X(k) = 0)ΣM,j(j, j), (8)

where ΣM,j = Σ(Mj ,−ε1, ε1).

Proof: We use the relation

Π(k) =
T�

j=0

Pr(X(k) = j)E[edec(k)(edec(k))T | X(k) = j].

For j = 0, since the estimation error edec(k) = 0, we obtain

E[edec(k)(edec(k))T | X(k) = j] = 0.

For j > 0, we use the fact that the error covariance edec(k) under the event X(k) = j is simply
�j

i=0A
iw(k − i). However, since the process noise w(j) is white and has a time-invariant probability

distribution function, we can alternatively write

E[edec(k)(edec(k))T | X(k) = j] = var[Zj−1 | Nj ],

where var(X) is the variance of the random variable X and Ni was defined in (4). The variance of

Zj−1 is given by the (j, j)-th element of the variance matrix of Mj ; however, as calculated under the

truncation imposed by Nj , i.e., all the elements Z0, · · · , Zj−1 being bounded between −ε1 and ε1. This

variance is given by ΣM,j(j, j). Together with (7), this yields the desired expression.

Together, these two results provide analytic expressions for the communication frequency and average

error covariance given any level ε.

V. MAIN RESULTS

In this section, we present the main results of this paper. We are going to analyze performance of

event triggered algorithms with various CSMA schedulers.
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A. Markov Model for Multiple Plants

We focus on the case when plant states can be observed. For a NCS with N ≥ 2 plants over a

common network, we can also define a discrete-time discrete-state Markov chain M with Ns = (Te +

1)Te · · · (Te −N + 2) states {X(k)}k≥0 ∈ RN and the transition probabilities

Pr[X(k + 1) = m
��X(k) = n]�p(m1, · · · ,mN

��n1, · · · , nN ),

such that X(k) = m implies that at time k, the last transmission for the ith plant occurred at time

k −mi. Note that mi �= mj for all i �= j since the network does not permit simultaneous transmissions.

Performance of event triggered algorithms can be characterized by this Markov chain. In the following

analysis, we concentrate on the case when N = 2 and the arguments can be easily generalized to N > 2.

When two plants share a network, at every time step, there are 3 possibilities of information transmis-

sion:

• The network transmits information from S1.

• The network transmits information from S2.

• The network does not transmit any information.

This corresponds to the structure of the Markov chain. In particular, for any mode {i1, i2} when i1, i2 <

Te, it can go to the following modes correspondingly,


 0

i2 + 1



 ,



 i1 + 1

0



 ,



 i1 + 1

i2 + 1



 ,

whose transition probabilities are determined by the scheduling policies. For the modes with i1 = Te or

i2 = Te, the network transits information for S1 or S2, respectively. Thus, for any scheduling policy, we

have transitions as 

 Te

i2



 →



 0

i2 + 1



 ,



 i1

Te



 →



 i1 + 1

0





with probability 1. To clarify this, let us see an example.

Example 4: Consider a NCS with N = 2 plants over a shared medium. Assume the maximum delay

that each plant can tolerate is Te = 2. We can define a Markov chain with the following Ns = 6 modes

as shown in Fig. 4. The communication rate for S1 and S2 are given as

P1 = Pr(



 0

1



) + Pr(



 0

2



),

P2 = Pr(



 1

0



) + Pr(



 2

0



),
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Fig. 4. Illustrating example for the Markov model with Te = 2.

respectively. The communication rate for the network is then given by P0 = P1 + P2. From the mode

{1, 0} and {0, 1}, there are three possible transitions and the following transitions are with probability 1.


 0

2



 →



 1

0



 ,



 1

2



 →



 2

0



 ,



 2

0



 →



 0

1



 ,



 2

1



 →



 0

2



 .

To characterize the system performance, we need to calculate the probability of each Markov mode.

To this end, define P ∈ RNs as the vector for probability of each mode and define b = [1, 0, · · · ] ∈ RNs .

The relations of the modes are given through the following equation

∆P = b, (9)

where ∆ ∈ RNs×Ns with the first row [1, 1, · · · , 1] given by the balance equation and the rest elements

can be determined from the structure of the Markov model. One can verify that the matrix ∆ is always

of full rank. This guarantees the above equation (9) has a unique solution.

Remark 1: The matrix ∆ may not be unique since the relations between the Markov modes can be

expressed in various manners, however, all these ∆s will give the same probability of each mode in the

end.

In the next, we are going to characterize this matrix ∆ and further evaluate the performance of event

triggered algorithms with static, random and dynamic schedulers through the Markov model defined

above.

B. Event Trigger with Static Scheduler

We assume the ith plant has the ith priority without loss of generality. The NCS will execute Algorithm

1. This procedure guarantees that S1 wins the arbitration to access the network whenever contends with
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S2.

Algorithm 1 Event Trigger with Static Scheduler
if t1 ≥ Te then

transmit the packet from S1

else

if t2 ≥ Te then

transmit the packet from S2

else

if | ecomp
1 (k) |> ε1 then

transmit the packet from S1

else

if | ecomp
2 (k) |> ε2 then

transmitthe packet from S2

else

no transmission

end if

end if

end if

end if

Lemma 2: By using static scheduler, for any 0 ≤ i < Te,

p(0, i+ 1
��Te, i) = 1; p(i+ 1, 0

��i, Te) = 1. (10)

Furthermore, for 0 < i < Te, we have

p(0, i+ 1
��0, i) = p(1)0,0, (11)

where p(1)0,0 can be calculated through (6) using {A1, w1}.

Proof: The equality (10) holds since the network transmits information for each plant at least once

every Te time steps. (11) holds because S1 has higher priority and thus information transmission is
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delayed for S2 when local event for S1 is generated and i < Te, i.e.

p(0, i+ 1
��0, i) = Pr







 0

i+ 1



 |



 0

i









= Pr(X1(k + 1) = 0 | X1(k) = 0)

= Pr(|w1(k)| > ε) � p(1)0,0.

Let us consider Example 4. We have the following relation

Pr







 1

0







 = Pr







 0

1







 p(1)01 p̄
(2)
10 + Pr







 0

2







 , (12)

where p(1)01 = 1− p(1)00 and p̄(2)10 given by

p̄(2)10 = Pr(|A2w2(k − 1) + w2(k)| > ε).

One step further, we have the following transition,


 0

1



 →



 1

0



 →



 2

1



 ,



 0

2



 →



 1

0



 →



 2

1



 ,

and from these transitions we have

Pr







 2

1







 = Pr







 0

1







 p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
01 (13)

+ Pr







 0

2







 p̄(1)12 p
(2)
01 ,

where p(2)01 = 1− p(2)00 and

p(1)12 = Pr(|A1w1(k − 1) + w1(k)| < ε
��|w1(k − 1)| < ε)

can be calculated through (6) by using {A2, w2} and respectively {A1, w1}. p̄(1)12 is given by

p̄(1)12 = Pr(|A1w1(k − 1) + w1(k)| < ε).
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We can obtain the following relations in a similar manner,

Pr







 1

2







 = Pr







 0

1







 p(1)01 p̄
(2)
12 , (14)

Pr







 2

0







 = Pr







 0

1







 p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
00 (15)

+ Pr







 0

1







 p(1)01 p̄
(2)
12 + Pr







 0

2







 p̄(1)12 p
(2)
00 ,

P r







 0

2







 = Pr







 0

1







 p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
01 (16)

+ Pr







 0

1







 p(1)00 + Pr







 0

2







 p̄(1)12 p
(2)
01 ,

where p̄(2)12 = 1− p̄(2)10 .

In such a way, we represent the probabilities of all modes through the relations with mode {0, 1} and

{0, 2} as in (12)-(16). Then from the balance equation that the sum of all probabilities equal to 1, we

can solve for probability of each mode. More compactly, define

a = p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
00 + p(1)01 p̄

(2)
12 , b = p(1)01 p̄

(2)
10 p

(1)
12 p

(2)
01 ,

and we obtain the probability for every individual mode from equation (9) with ∆ given as




1 1 1 1 1 1

p(1)01 p̄
(2)
10 1 −1 0 0 0

p(1)01 p̄
(2)
12 0 0 −1 0 0

a p̄(1)12 p
(2)
00 0 0 −1 0

b p̄(1)12 p
(2)
01 0 0 0 −1

p(1)00 + c −1 + p̄(1)12 p
(2)
01 0 0 0 0





. (17)

Remark 2: Notice p̄(1)12 �= p(1)12 , since in transitions such as


 0

2



 →



 1

0



 →



 2

1



 ,

X1(k) = 1 is caused by t2 = Te independent of the error |w1(k − 1)| which yields p̄(1)12 . However, in

transitions such as 

 0

1



 →



 1

0



 →



 2

1



 ,
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X1(k) = 1 is caused by |w1(k − 1)| < ε and this yields p(1)12 . Similarly, we have p̄(2)10 �= p(2)10 .

Remark 3: For single plant case, we can easily obtain the relations between the modes from the

structure of the Markov model. Particularly, the matrix ∆ for single plant is given as




1 1 · · · 1

p01 −1

p12 −1

p23 −1
. . . . . .

pT−1,T −1





,

and the transition probabilities are given in Lemma 1. For the multiple case, however, it is more

complicated because of coupling of the two Markov states in one mode.

By solving (9), we obtain the probability of each Markov mode. The following result is immediate.

Theorem 5: For Te = 2, the average communication rate for S1 under event triggered algorithm

described above is given by P1 = Pr({0, 1}) + Pr({0, 2}), and P2 = Pr({1, 0}) + Pr({2, 0}) for S2

through P = ∆−1b with ∆ given in (17). Furthermore, the average communication rate for the network

is given by P0 = P1 + P2.

The other performance metric is the covariance of the estimation error Πi(k) = E[edeci (k)(edeci (k))T ],

which is given by the following result.

Theorem 6: For Te = 2, the steady state average error covariance for the rth plant, Πr = limk→∞Πr(k),

under the event triggered algorithm described above is given by Πr(k) =
�Ns

j=1Πr(j) from (18-24).

Furthermore, the average error covariance for the NCS is given by Π = Π1 +Π2.

Proof: To calculate Π1, we use the relation Π1 =
�Ns

j=0Π1(j), where Π1(j) corresponds to the

error covariance under the Markov mode j as defined above. We have

Π1(1) = 0,Π1(2) = 0, (18)

since the estimation error edec1 (k) = 0. Under the Markov mode {1, 0}, we have

Π1(3) = Pr({0, 1})∆(1, 3)var{w1(k) | |w1(k)| < ε}

+ Pr({0, 2})var{w1(k)}.

As for single plant case, var{w1(k) | |w1(k)| < ε} is given by Σ(1)
M,1(1, 1). Thus, we have

Π1(3) = Pr({0, 1})∆(1, 3)Σ(1)
M,1(1, 1) + Pr({0, 2})Rw1 . (19)
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Under the Markov mode {1, 2}, we have

Π1(4) = Pr({0, 1})∆(1, 4)Σ(1)
M,1(1, 1). (20)

We can also obtain the error covariance under mode {2, 0},

Π1(5) = Pr({0, 2})p̄(1)12 p
(2)
00 Ξ1 (21)

+ Pr({0, 1})p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
00 Ξ2

+ Pr({0, 1})p(1)01 p̄
(2)
12 Ξ3,

where Ξ1 = Σ(A1w1(k−1)+w1(k),−ε, ε) can be evaluated through Gaussian integrals, Ξ2 = Σ(1)
M,2(2, 2),

and

Ξ3 = var{A1w1(k − 1) + w1(k) | |w1(k − 1)| < ε}

= A1Σ
(1)
M,1(1, 1)A

T
1 +Rw1 .

Also, the error covariance under the mode {2, 1} is given by

Π1(6) = Pr({0, 2})p̄(1)12 p
(2)
01 Ξ1 (22)

+ Pr({0, 1})p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
01 Ξ2.

To calculate Π2, similar to calculation of Π1, we use the relation Π2 =
�Ns

j=0Π2(j) with

Π2(3) = 0,Π2(5) = 0, (23)

since the estimation error edec2 (k) = 0. We can also have the following relations

Π2(1) = Rw2 , (24)

Π2(2) = Pr({0, 1})p(1)00 Ξ4 + Pr({2, 1})Ξ5,

Π2(4) = Pr({1, 2})Ξ4,

Π2(6) = Pr({2, 1})Σ(2)
M,1(1, 1),

where Ξ4 = Σ(A2w2(k − 1) + w2(k),−ε, ε) and Ξ5 = A2Σ
(2)
M,1(1, 1)A

T
2 + Rw2 . Together with the

probabilities from the previous theorem, this yields the desired expressions.

Remark 4: For single plant case, edec(k) = 0 for X(k) = 0 and X(k) = j > 0 implies the estimation

error in previous steps all less than ε. As a result, the error covariance under the mode X(k) = j > 0 is
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simply

Π(j) � Pr(X(k) = j)E[edec(k)(edec(k))T | X(k) = j]

= Pr(X(k) = j)ΣM,j(j, j)

and the average estimation error covariance can be calculated as
�T

j=1Π(j). For the multiple case,

however, we have to identify how it comes to the current mode, caused by local events or network

constraints, which yields different expressions for the error covariance.

Remark 5: For Te > 2, a similar Markov chain can be defined by considering two more variables for

each mode indicating how long has each plant signaled it wants to transmit and basically the issue is

that to calculate the transition probabilities, one has to track the past states as well. This will result in

too many Markov states and the problem is beyond the scope of this paper.

C. Event Trigger with Random Scheduler

With random scheduler, both plants have the chance to win the arbitration when contention occurs.

Denote Pα as the probability for S1 to win, and 1−Pα for S2. The access probability Pα is provided by

the network [11]. When there is no contention, the plant can transmit information successfully whenever

its local event is generated.

Consider the Markov model shown in Fig. 4. As mentioned earlier, one has to track the past states to

calculate the transition probabilities. As an example, consider the transition from mode {0, 1} to {1, 0}.

The transition probability for X2(k) = 1 → 0 is not given by p̄(2)10 (as for static scheduler). The reason

is that X2(k) = 1 in the mode {0, 1} depends on the error w2(k − 1) in the previous step. Similarly,

in transition {0, 1} → {1, 0} → {2, 0}, the transition probability for X1(k) = 1 → 2 is not given by

p̄(1)12 since X1(k) = 0 → 1 might be caused by |w1(k − 1)| > ε as well. However, the approximation

of ignoring this past and calculating transition probability only with the current state is close, which is

verified through simulations. Through such approximations, the matrix ∆ for a random scheduler is given

as 



1 1 1 1 1 1

∆21 −1 0 0 0 1

∆31 1 −1 0 0 0

p(1)01 (1− p̄(2)10 ) 0 0 −1 0 0

0 0 ∆53 1 −1 0

0 0 p̄(1)12 (1− p(2)00 ) 0 0 −1





, (25)
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where

∆31 = [p(1)01 + p(1)00 (1− Pα)]p̄
(2)
10 ,

∆53 = p(2)00 [p̄
(1)
12 + (1− p̄(1)12 )(1− Pα)],

∆21 = (1− p(1)01 )(p̄
(2)
10 Pα + 1− p̄(2)10 ).

By solving equation (9) with ∆ given in (25), we can get the probability for each mode. The

approximate results calculated in this way match closely to the Monte Carlo simulations as demonstrated

in Section VII. We can therefore characterize the communication rate and error covariance from this

Markov model along the same lines as for static scheduler.

D. Event Trigger with Dynamic Scheduler

With dynamic scheduler, when two local events are generated simultaneously, the network grants

the one with maximum error |ecomp
i (k)| to access the network first. As a result, the network transmits

information for S1 if it has a larger error when both local events are generated, i.e.

|ecomp
1 (k)| > |ecomp

2 (k)|, |ecomp
1 (k)| > ε, |ecomp

2 (k)| > ε,

or the following events occur

|ecomp
1 (k)| > ε, |ecomp

2 (k)| < ε.

Define the conditional probability Pd as follows,

Pd � Pr(|ecomp
1 | > |ecomp

2 |
��|ecomp

1 | > ε, |ecomp
2 | > ε),

where the dependence of the errors on time k is omitted for notational convenience. It is worthwhile to

point out that for random scheduler case, when both errors exceed the predefined threshold, the probability

of the network to transmit information for S1 is actually

PαPr(|ecomp
1 | > ε, |ecomp

2 | > ε).

For the dynamic case, unlike Pα defined above, Pd depends on the magnitudes of the errors of both

plants and hence the interference between the plants and the shared medium becomes more complicated.

Pd can be exactly evaluated through Gaussian integrals because the errors are Gaussian random variables

as defined in (3). However, for simplicity, we can use

λ � Pr(|ecomp
1 | > |ecomp

2 |)
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as an approximation of the conditional probability Pd. In fact, we have λ = 1/2 based on the following

arguments. From the fact that

Pr(|ecomp
1 | > |ecomp

2 |) = Pr(|ecomp
1 |2 > |ecomp

2 |2)

= Pr(ecomp
1 + ecomp

2 > 0, ecomp
1 − ecomp

2 > 0)

+ Pr(ecomp
1 + ecomp

2 < 0, ecomp
1 − ecomp

2 < 0)

(e)
= Pr(ecomp

1 + ecomp
2 > 0)Pr(ecomp

1 − ecomp
2 > 0)

+ Pr(ecomp
1 + ecomp

2 < 0)Pr(ecomp
1 − ecomp

2 < 0),

and (e) holds because ecomp
1 + ecomp

2 and ecomp
1 − ecomp

2 are Gaussian random variables and mutually

independent. Since ecomp
1 and ecomp

2 are zero mean, we have

Pr(ecomp
1 + ecomp

2 < 0) = 1/2,

P r(ecomp
1 − ecomp

2 < 0) = 1/2.

This yields the desired result. Therefore, the communication rate can be calculated as a special case of

random access by setting Pα = λ = 1/2. The results given by this approximation match the Monte Carlo

experiments very closely as demonstrated in Section VII.

Remark 6: λ �= 1/2 for N ≥ 2, although λ can be evaluated through Gaussian integrals for the general

case.

Remark 7: The error covariance is different from random scheduler case (with Pα = 1/2) since for

dynamic scheduler there exists additional condition on the magnitudes of ecomp
1 and ecomp

2 . However, the

error covariance can be evaluated through Gaussian integrals as discussed in Section V-D.

VI. DISCUSSIONS ON SPECIAL CASES

In this section, we provide analytical results for special cases of event and time triggered algorithms.

When ε = 0, the local event (2) for each plant is generated at every time step. This implies both plants

intend to access the network simultaneously at each time step. The network is thus utilized at every

time step and the decision to transmit packets from which plant is based on the scheduling policies. It

is worthwhile to point out that the following analysis can be used as an approximation for ε � 0.

A. Static scheduler for ε = 0

The network transmits information for S1 with higher priority until the hard constraint for maximum

tolerable delay of S2 is triggered. The Markov model will be reduced to Te +1 states with all transition
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probabilities 1 as shown in Fig 5. The following result is immediate.

1
0

kX 2
0

kX 0
1

kX
e

k T
X

01 1 1

1

Fig. 5. Static Scheduler when ε = 0.

Lemma 3: Consider the event triggered algorithm with static scheduler for ε = 0. The average

communication rate for S1 and S2 are given by

P1 =
Te

Te + 1
, P2 =

1

Te + 1
,

respectively. Furthermore, the steady state average error covariance for S1 and S2 are given by

Π1 =
1

Te + 1
Rw1 ,Π2 =

1

Te + 1

Te�

i=1

i−1�

j=0

A2
jRw2(A

T
2 )

j
.

Proof: From the structure of the Markov chain shown in Fig 5, the probabilities of all modes are

identical. From the balance equation that the sum of the probabilities of all modes is equal to 1, the

probability for each mode is 1/(Te + 1). Therefore, the communication rate for Si is given by

P1 =
Te�

j=1

Pr(X(k) = [0; j]) =
Te

Te + 1
,

P2 = 1− P1 =
1

Te + 1
.

The estimation error for S2 under the mode X(k) = [0, j] for 1 ≤ j ≤ Te is given by Zj . Thus the error

covariance for S2 can be calculated as

Π2 =
Te�

j=1

Pr(X(k) = [0; j])E{Zj−1Zj−1
T }

=
Te�

j=1

1

Te + 1

j−1�

i=0

Ai
2Rw2A

T
2
i
.

The error covariance for S1 is simply 1
Te+1Rw1 .
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B. Random scheduler for ε = 0

Since both local events are generated, the network transmits the packets from S1 with probability Pα

and transmits the packets from S2 with probability 1 − Pα. The Markov model is presented in Fig. 6.

The communication rate and error covariance can thus be obtained along the lines of Lemma 3 through

the following result.

1
0

kX 2
0

kX 0
1

kX
e

k T
X

0P 1
0
2

kX
0
e

k

T
X

P1

P1

P1 P1P

P
P

1

Fig. 6. Random Scheduler when ε = 0.

Lemma 4: Consider the event triggered algorithm with random scheduler for ε = 0. The average

communication rate for S1 and S2 are given by

P1 =
(1− P Te

α )

1− Pα
ρ, P2 =

1− (1− Pα)Te

Pα
ρ,

where ρ = Pα(1−Pα)
1−PTe+1

α −(1−Pα)Te+1
. Furthermore, the steady state average error covariance for S1 and S2 are

given by

Π1 =
ρ

1− Pα

Te�

i=1

(1− Pα)
i
i−1�

j=0

A1
jRw1(A

T
1 )

j
,

Π2 =
ρ

Pα

Te�

i=1

P i
α

i−1�

j=0

A2
jRw2(A

T
2 )

j
.

C. Time triggered algorithm

In this section, we evaluate the performance by using time trigger with TDMA. Since we do not

consider the cost of using the network, we assume the network transmits information at every time step.

For N = 2, there exist two possible schedules: S1 = {1, 2, 1, 2 · · · } and S2 = {2, 1, 2, 1 · · · }. If

A1 = A2 and Rw1 = Rw2 , we are going to show that the two round robin schedules S1 and S2 are both

optimal. Otherwise, one can find an optimal schedule by evaluating the cost function for every possible

schedule [2]. Assume x̂deci (0) = 0 for i = 1, 2. With schedule S1, at the ith estimator, we have for any
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0 ≤ j ∈ Z and for any k ≥ 1,

x̂deci (k) =






xi(k), if k = 2j + i,

Aix̂deci (k − 1), otherwise.

It is easy to verify that for any k ≥ 2,

x̂deci (k) =






xi(k), if k = 2j + i,

Aixi(k − 1), otherwise,

and the estimation error evolves as

edeci (k) =






0, if k = 2j + i,

wi(k − 1), otherwise.

Therefore, we can obtain for schedule S1 and k ≥ 2,
2�

i=1

lim
t→∞

1

t

t�

k=2

E[edeci (k)(edeci (k))T ] =
1

2
(Rw2 +Rw1).

The system performance can be calculated as

J = lim
t→∞

1

t

�
2�

i=1

t�

k=2

E[edeci (k)(edeci (k))T ] + ν3

�

=
1

2
(Rw2 +Rw1),

where ν3 > 0 is finite and depends on the values of A2, R2. For schedule S2, we will obtain the same

system performance along the above lines. Therefore, for N = 2, both schedules are optimal with the

minimum cost given by

ΩT =
1

2
(Rw2 +Rw1).

D. Comparison of special cases

Now, we are ready to state the main result in this section, which compares performance of time trigger

and event trigger with various MA schemes. Note that the system performance is continuous with respect

to the threshold ε and thus the previous results for ε = 0 can be considered as a good approximation for

small positive ε.

Theorem 7: For ε � 0, denote system performance as ΩT ,ΩS ,ΩR for time trigger and event trigger

with static scheduler and random scheduler, respectively. We have the following result: ΩT < ΩS ,ΩT <

ΩR.
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Proof: When the network is fully utilized, for time trigger with TDMA, the system performance is

given by

ΩT =
1

2
(Rw1 +Rw2),

which is independent of the system dynamics A1, A2.

For event trigger with static scheduler, a lower bound for system performance ΩS is given by

ΩS >
1

Te + 1
[Rw1 + TeRw2 ] + ν1.

The gap between two sides of the above inequality (ν1 > 0) depends on the dynamic of S2, or A2. For

instance, with Te = 2, the gap is characterized by A2Rw2A
T
2

(Te+1) . For simplicity, we assume Rw1 = Rw2 , thus

we obtain

ΩS > ΩT + ν1 > ΩT .

For event trigger with random scheduler, a lower bound of system performance ΩR is given by

ΩR > ρ
Te�

i=1

�
(1− Pα)

i−1Rw1 + P i−1
α Rw2

�
+ ν2,

The gap between two sides of the above inequality (ν2 > 0) depends on the the dynamics of both plants,

or A1, A2. Again, for simplicity, we assume Rw1 = Rw2 , then we have

ΩR >
Te�

i=1

ρ
�
(1− Pα)

i−1 + P i−1
α

�
Rw + ν2,

= ρRw

�
1− (1− Pα)Te

Pα
+

1− P Te
α

1− Pα

�
+ ν2

= Rw + ν2 > ΩT ,

It has been shown that ΩT < ΩS ,ΩT < ΩR. In other words, time trigger with TDMA performs better

than event trigger with static and random schedulers.

Remark 8: For dynamic case, we can obtain similar results. However, the system performance is now

evaluated through Gaussian integrals. As an example, for the transition from mode [0; 1] to [1; 0], we

need the following formula,

var{X
��|X| < |Y |} =

� ∞

−∞
f(y)dy

� |y|

−|y|
x2f(x)dx
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where f(x) = N(0, R1) and f(y) = N(0, R2) are normal distributions with mean 0 and variance

R1 = Rw1 and R2 = (A2
2 + 1)Rw2 , respectively. This integral can be evaluated as

2

� ∞

0

� y

−y

x2

2π
√
R1R2

exp

�
−1

2
(R−1

1 x2 +R−1
2 y2)

�
dxdy

= 2
R1

2π

� π−β

β
cos2 θdθ

� ∞

0
exp

�
−1

2
r2
�
r3dr

=
R1

π
[π − 2β − sin(2β)],

and β ∈ [0, π/2] satisfies r cosβ
√
R1 = r sinβ

√
R2. Together with the fact Pr(|X| < |Y |) = 1/2, this

yields

var{X
��|X| < |Y |} = 2

R1

π
[π − 2β − sin(2β)].

VII. SIMULATION RESULTS

A. Static Scheduler

We consider the system model provided in Example 1 with A1 = 0.8 and A2 = 0.5. We set automatic

transmission happens after Te = 2 time steps. For simplicity, we set the triggering level ε1 = ε2 = ε.

For various values of ε from 0 to 4, we evaluated system performance for static scheduler as predicted

by Theorems 5 and 6. We compared the analytic results to Monte Carlo simulations of the system. For

each value of ε, we conducted 20,000 simulations and obtained the mean communication rate and error

covariance. The comparison is shown in Fig. 7 for the communication rate in the top plot and in the

bottom one for the error covariance. It can be seen that the analytic results match the Monte Carlo

simulations very closely.

From the bottom plot in Fig. 7, we can see that for ε ∈ [0.2, 1.2], the error covariance for event

trigger is less than time trigger; however, for other values of ε ∈ [0, 4], time triggered algorithm performs

better. This implies that there is a probability of 75% for event-triggered algorithm to perform worse

than time-triggered algorithm if we choose the threshold randomly. Even for the same communication

frequency, event-triggered algorithm may also perform worse as shown in section II-B.

B. Random and Dynamic Schedulers

For event trigger with random and dynamic schedulers, we verified our results as predicted in Section

V-C and Section V-D. The results for communication rates for each plant are shown in Fig. 8 for random

scheduler by setting Pα = 0.7 and for dynamic scheduler in Fig. 9 by setting Pα = 0.5, respectively. For
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Fig. 7. Performance metrics for the NCS obtained from derived analytic expressions and Monte Carlo simulations.

the random case, we verified the results for other values of Pα as well. It can be seen that the results

obtained from approximate models for both cases match the Monte Carlo simulations very closely.

The system performance by using approximate models for random scheduler in terms of the commu-

nication rate and the error covariance is provided in Fig. 10. Although the communicate rates match the

simulations very closely, there is a small gap between the approximate error covariance and the simulation

results. This basically tells us ignoring the past states of the Markov modes can provide us very good

approximations but cannot yield the exact results.

VIII. FINAL REMARKS

This paper studies state estimation for a NCS with multiple plants over a shared communication

network. Each plant transmits information through the common network according to a time-triggered

or an event-triggered rule. For a time-triggered algorithm combined with TDMA, each plant uses the

network according to an off-line scheduling. For an event-triggered algorithm with CSMA, each plant

is assumed to access the network based on one of the following scheduling strategies: static, random or

dynamic schedulers. Performance in terms of the communication rate and estimation error covariance is

analytically characterized for some special cases. Our results demonstrate that event-triggered schemes

may preform worse than time-triggered schemes when considering the effect of communication strategies.

This work examines the interaction between the control world and the communication world. We

consider a general system model which is not restricted to scalar integrator dynamics. Moreover, we use
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Fig. 8. Communication rates for each plant using random scheduler.
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Fig. 9. Communication rates for each plant using dynamic scheduler.

CSMA protocols to model the communication network, which provides a collision resolution mechanism.

We investigate the system performance more thoroughly, in terms of both the communication rate and the

estimation error covariance. Different to the previous results, we show time trigger may outperform event

trigger through both numerical examples and analytical results for some special cases. For future works,

we need a more accurate model to analyze general cases (such as for Te > 2). It is also interesting to

find an optimal triggering level for various scheduling policies. Another extension is to consider a control
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Fig. 10. Performance metrics for the NCS using random scheduler obtained from approximate expressions and Monte Carlo

simulations.

setting where the control input is updated using an event triggered rule and consider other performance

metrics (such as LQG). From a design point of view, it is also interesting to design an optimal scheduling

strategy for given control tasks.
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